写在前面
- 看的网课是:台湾交通大学-陈伯宁(Po-ning chen)
- 主要证明方法: 大数定理
- 课本:An Introduction to Single-User Information Theory, Fady Alajaji and Po-Ning Chen.
Shannon’s theorem
- Shannon first theorem -> source coding theorem
- Shannon second theorem -> channel coding theorem
- Shannon third theorem -> rate-distortion therem
- Information transmission theorem (heavy-core) == joint source-channel coding theorem
Overview
Channel Coding Entropy
这个模块是 Channel Coding Theorem(second theorem)
Claude Shannon give a conclusive result.
Channel Capacity: 通信管道的传输是有上限的。不可能比超越 Capacity 即使是技术进步。
Source Entropy
随机信号源无损压缩的极限是source entropy
这里shannon的论文上写的是 Theorem2 但是是 Shannon First Theorem
Rate-Distortion
信息压缩要有点损失,传输的Entropy小于Channel Capacity的时候,损失(Distortion)和传送速率(Rate)的关系: Rate-Disortion
Random Coding Augment
- Shannon 提出的一种 “船新” 的证明模式
- 只证明了 最优传输方法的存在性
- 数学期望逼近0,那么必定存在方法让错误率->0
Introduction
Information
What’s the information
- Uncertainty
- information is a message that is previously uncertain to receivers
- Uncertainty
Representation of Information
- After obtaining the information, one may wish to store it or convey it; this raises the question that:
how to represent information for ease of storing it or for ease of conveying it?
Representation of information
Code: 和 language 一样是有限符号集的排列。
不同的编码,就好似不同的人类语言
Dictionary and Codebook
有时候会把 book 省略
- Assumption made by both transmitter and receiver about symbolized information
- All “possible symbols” of the conveyed information are a priori known.
- The receiver is only uncertain about which symbol is going to be received.
- Example. In a conversation using English,
- it si priori known that one of the vocabularies in an English dictionary is going to be spoken.
- Just cannot tell which before its reception/
- Example. In code digital communications,
- the codebook(or simply code)–the collection of all possible concatenations of pre-defined symbols–is always a priori known (to the receiver).
- Only uncertain about which is going to be receiced.
Compactness
Compactness是一个很古典的用词,等同于现代的 Compression
How to find the most compact code?
- 推导最小的平均码长在所有可能的编码,再构建一个满足最小要求的编码
- 通过measure将要传输的信息的多少
How to measure inforrmation
信息是纪律的函数
公设
- 几率相关: 事件越不可能发生,所携带的信息越多。
- 可加性:独立事件的信息量,等于两者相加。
- 连续性:事件发生几率的微小改变会引起信息量的微小改变。
The only “measure” satisfying these axioms is:
- If Shannon’s statement is true, then the below definitions on information content are equivalent:
- (Engineering view) The average cdeword length of the most compact code representing the information
- (Probabilistic view) Entropy of the information
- In 1948 Shannon proved that the above two views are actually equivalent(under some constraints). I.e., the minimum average code length for a source descriptive code is indeed equal to the entropy of the source.
One can compute the entropy of a source, and assures that if the average codeword length of a code equals the source entropy, the code is optimal.
Contribution of Shannon
- Shannon’s work laid the foudation for the field of information theory.
- His work indicates that the mathematical results of information theory can serve as a guide for the development of information manipulation systems.
- The measure of information is defined based on the definition of compactness
- the definition of measure of code compactness may be application-depandent.
虽然Shannon给出了一个conclusive result。仍然有许多基于应用的例子。
- 为了对抗噪声,引入了编码冗余
- 3比特传输一个信息,传输的效率也就降低为1/3 information symbol per channel usage
Information transmission
上面的coder其实都是encoder
- Source Encoder是对冗余信息的压缩系->(压缩到最好)Entropy
- Channel Encoder 跟Source Encoder和在一起设计,称为 joint source-channel encoder.
Shannon’s Separate Design
两个Encoder独立且最优的时候,整个joint Encoder最优。
- Source encoder
- Find the most compact representation of the informative message.
- Channel encoder
- According to the noise pattern, add the redundancy so that the source code bits can be reliably transmitted.
Source encoder 资料压缩,挤出冗余信息。
Channel encoder 添加结构性冗余,以对抗 noise
compression rate
For source encoder, the system designer wishes to minimize the number of U’s required to represent one Z’s, i.e,
Compression Rate 越低越好
- Shannon tells us that(for i.i.d. Z’s)
上式中,log的底数是信号u的事件集合大小 {0,1}的底就是2
- 最好的压缩方法,讯息的 source entropy=1
- 最好的压缩码就是uniformly distributed.
- 反过来,如果输出的编码分布不是 uniformed那么一定不是最好的压缩码(Entropy<1)
transmission rate
Channel Encoder的输出序列为
Channel code rate每个X表示的U的量。
- Post title: 01_The philosophy behind imformation theory
- Create time: 2022-05-20 10:47:13
- Post link: Information-Theory/01-the-philosophy-behind-imformation-theory/
- Copyright notice: All articles in this blog are licensed under BY-NC-SA unless stating additionally.